Thin Film Interferences of SiO₂ and TiO₂:

Thickness and Iridescence

Eman Mousa Alhajji

North Carolina State University

Department of Materials Science and Engineering

MSE 355 Lab Report

201

А

Matthew Manning

11/04/2016

Abstract

The objective of this experiment was to use a computational approach utilizing fundamental principles of thin film interference and optics to determine whether the thickness of a thin film could be estimated by its color and to determine whether it is iridescent. First, color charts for SiO₂ and TiO₂ thin films were computed using thicknesses between 200 and 425 nm in an increment of 25 nm and wavelengths from 380 to 700 nm in an increment of 10 nm. Second, The wavelengths based on angles of incident light ranging between 0° and 40° in 1° increment for SiO₂ thin films with thicknesses of 200, 325, and 400 nm were computed. Computations were performed using Microsoft Excel spreadsheets. Experimental results showed the colors of the reflected light for SiO₂ were pure yellow for 200 nm, pure red for 225 nm and 250 nm, violet blue for 275 nm, blue to violet blue for 300 nm, blue to blue green for 325 nm, green to yellow green for 350 nm, yellow Green for 375, dark purple for 400 nm, and pure orange for 425 nm. For TiO₂, the colors of the reflected light were green to yellow green for 200 nm, yellow orange for 225 nm, pure red for 250, cyan for 275 nm, green to yellow green for 300 nm, green yellow for 325 nm, light orange for 350 nm, cyan for 375 nm, pure red for 400 nm, and green yellow for 425 nm. As the angle of incident light varied, the wavelengths of light reflected varied from 583.4 nm to 523.6 nm for the SiO₂ films of 200 nm and 400 nm thicknesses. Similarly, the SiO₂ film of 325 nm thickness reflected wavelengths of light varying from 474.01 nm to 425.49 nm, indicating iridescent properties. The experiment implied that the thickness of a film can be estimated based on its color. It also implied that the color reflected by the film is dependent upon the angle of incident light.

Introduction

Visible light is an electromagnetic wave, characterized by a wavelength, an amplitude and a phase. The wavelength of a wave defines the distance over which the wave's shape repeats. The amplitude defines the intensity or brightness of the light and the phase describes a particular point in the wave cycle. ¹ Visible light lies within a very narrow region of the electromagnetic radiation spectrum, with wavelengths ranging from 380 nm to 750 nm, each of which determines the perceived color. ^{1,2} For instance, radiation having a wavelength of about 380 nm looks violet, while green and red occur at approximately 500 nm and 650 nm, respectively. When light proceeds from one medium into another, several phenomena happen. Some of the light waves may be transmitted through the medium, some may be absorbed, and some may be reflected at the interface between the two media. ^{1,2}

Light that is transmitted into the interior of transparent materials experiences a decrease in velocity, and, as a result, is bent at the interface, which is known as refraction. The index of refraction of a material is defined as the ratio of the velocity in a vacuum to the velocity in the medium. When light wave passes from one medium into another having a different index of refraction, some of the light is reflected at the interface between the two media. ^{1,2}

Reflections can result in constructive or destructive interference. Constructive interference occurs when the incident and reflected waves of light are in phase or are shifted by a multiple of 2π . The peaks and troughs of the two waves are aligned and the amplitude of the wave is doubled. On the other hand, destructive interference occurs when the incident and reflected waves have a phase difference of π . ² The peaks of one wave coincide with the troughs of the other wave and the amplitude of the light is zero. The reflected light will experience a phase change by π radians if the index of refraction of the first medium is less than that of the second medium. ²

2

In a thin film, incident light is reflected twice by the upper and lower boundaries of a thin film interfere.² The incident light is reflected once at the boundary between the air and the film and once again at the boundary between the film and the substrate to form a new wave that depends on the thickness of the thin film. Differences in the phases of the two waves occur as the second wave travels extra cycles within the thin film and as the waves strike an interface.²

The color reflected by a thin film can be determined by finding the wavelength of light that corresponds to the maximum amplitude for the type of film and film thickness. The amplitude of the wave at a given thickness can be determined using the cosine of the phase difference of the normal incident light reflected by the substrate, which is given by:

$$A = \cos[(2t)2\pi\frac{n}{\lambda}] \tag{1}$$

where *A* is the amplitude, *t* is the thickness of the thin film, *n* is the refractive index of the thin film, and λ is the wavelength of incident light. The amplitude will be at a maximum when the cosine of the phase difference is 1, which corresponds to no phase difference. The amplitude will be at minimum when the cosine of the phase difference is 0, which corresponds to a phase change of π .²

Furthermore, iridescence is the phenomenon of surfaces that appear to change color as the angle of view changes. The wavelength of light reflected at the maximum amplitude as a function of the angle of incident light is defined by:

$$\lambda = \frac{2t}{m} \sqrt{n^2 - \sin^2(\theta_0)} \tag{2}$$

where λ is the wavelength, *t* is the thickness of the film, *m* is the order number, *n* is the refractive index of the film, and θ_0 is the angle of incident light. This relationship can be used to determine whether the color reflected by a thin film depends on the viewing angle.²

The objective of this experiment was to use a computational approach utilizing fundamental principles of thin film interference and optics to determine whether the thickness of a thin film could be estimated by its color and to determine whether it is iridescent. First, color charts for SiO₂ and TiO₂ thin films were computed using thicknesses between 200 and 425 nm in an increment of 25 nm and wavelengths from 380 to 700 nm in an increment of 10 nm. Second, dependence of color on angles of incident light ranging between 0° and 40° for SiO₂ thin films with thicknesses of 200, 325, and 400 nm was computed.

Experimental procedure

Microsoft Excel file was used in the analysis of thin film interference and optics. Several assumptions were made in computing the results. It was assumed that no light was adsorbed as it passed through the film and refractive index was independent of wavelength. Also, light from multiple reflections and polarization effects were ignored.²

The first part of the experiment was to compute two color charts, one for a thin film of SiO₂ on silicon and a second one for a thin film of TiO₂ on silicon. Thicknesses from 200 nm to 425 nm in increments of 25 nm were used. Wavelengths ranging from 380 nm to 700 nm in increments of 10 nm were utilized. The reflective index used for a thin film of SiO₂ on silicon was 1.4585. ^{1,3} The reflective index used for a thin film of TiO₂ on silicon was 2.6142. ³ Equation 1 was used to find the amplitude at the given thicknesses and wavelengths. In addition to the assumptions mentioned earlier, it was assumed that the light was at normal incidence. The wavelengths with the largest amplitude for the film thicknesses were determined and highlighted, and the color associated with that wavelength was determined using a Wolfram Alpha widget.⁴

The second part of the experiment was to calculate the wavelength and associated color for the largest amplitude reflected light as a function of the angle of incidence for an SiO₂ film

4

on Si. Angles ranging from normal 0° to 40° in 1° increment and thicknesses of 200nm, 325nm and 400nm were used. An order number (m) of 1 was determined for the thin film of 200 nm and 2 for 325 and 400 nm in order to examine wavelengths that were in the visible spectrum. Using Equation 2, results for color dependence on angle were calculated.

Results and Discussion

For the SiO_2 thin film, the amplitude of the light reflected was calculated for each thickness and each wavelength. As shown in Table 1, the maximum amplitude and the corresponding wavelength were identified.

Table 1. The amplitudes of reflected light for a SiO_2 thin film with maximum amplitude cells highlighted in pink.

SiO2	n			Film Thickness			
25 250 275	Wavelength (nm)	300	325	350	375	400	42
95 0.873504 0.766546	380	-0.32626	-0.99947	-0.38726	0.722999	0.903414	-0.0780
31 0.68396 0.93686	390	0.038656	-0.90704	-0.73827	0.337601	0.998671	0.432693
48 0.443462 0.999410	400	0.381232	-0.68483	-0.94634	-0.09606	0.867071	0.811548
08 0.179095 0.962922	410	0.664181	-0.38127	-0.99807	-0.49279	0.566511	0.988913
45 -0.08591 0.84412	420	0.865276	-0.04524	-0.90704	-0.79221	0.175612	0.95435
34 -0.33323 0.663774	430	0.975757	0.280745	-0.704	-0.96221	-0.2274	0.74208
62 -0.54962 0.443462	440	0.997553	0.564148	-0.42772	-0.99618	-0.5785	0.4118
62 -0.72657 0.20347	450	0.940169	0.783477	-0.11771	-0.90704	-0.83446	0.03106
07 -0.8597 -0.03858	460	0.817757	0.927624	0.190735	-0.72026	-0.97379	-0.3384
65 -0.94791 -0.26838	470	0.646648	0.994251	0.469406	-0.46734	-0.994	-0.6484
-0.99268 -0.47514	480	0.443462	0.987739	0.698259	-0.18063	-0.90704	-0.8678
.85 -0.99728 -0.6514	490	0.223771	0.917117	0.865276	0.110372	-0.73421	-0.9822
-0.9662 -0.79265	500	0.001257	0.794181	0.965545	0.381232	-0.50145	-0.9916
85 -0.90456 -0.89694	510	-0.21273	0.63195	0.999932	0.613637	-0.23554	-0.9070
35 -0.8178 -0.96432	520	-0.40931	0.443462	0.973625	0.795494	0.038656	-0.746
-0.71129 -0.99638	530	-0.58202	0.240931	0.894743	0.920441	0.299983	-0.5310
88 -0.59014 -0.99586	540	-0.72657	0.03519	0.773103	0.986996	0.531891	-0.2837
61 -0.45907 -0.9662	550	-0.84064	-0.16461	0.619206	0.997553	0.722682	-0.0254
54 -0.32232 -0.91129	560	-0.92345	-0.35111	0.443462	0.957347	0.865276	0.22552
04 -0.18359 -0.8352	570	-0.97555	-0.51873	0.255623	0.873504	0.95668	0.45423
.08 -0.04602 -0.742	580	-0.99847	-0.66354	0.064412	0.754216	0.997288	0.64965
52 0.087745 -0.63558	590	-0.99445	-0.78309	-0.12269	0.608057	0.990136	0.80445
33 0.215588 -0.51959	600	-0.9662	-0.87618	-0.29954	0.443462	0.940169	0.91471
02 0.335829 -0.39738	610	-0.91673	-0.9427	-0.46132	0.268341	0.853581	0.97943
04 0.447205 -0.27193	620	-0.84918	-0.98336	-0.60446	0.08982	0.737239	0.99999
32 0.548814 -0.14584	630	-0.76669	-0.99954	-0.72657	-0.08591	0.598225	0.97962
.84 0.640068 -0.02135	640	-0.67229	-0.9931	-0.82625	-0.25368	0.443462	0.92284
.32 0.720644 0.09964	650	-0.56886	-0.9662	-0.90297	-0.40931	0.279455	0.8350
88 0.790447 0.215588	660	-0.45907	-0.92122	-0.95691	-0.54962	0.1121	0.72192
88 0.849563 0.325248	670	-0.34535	-0.86062	-0.98883	-0.67232	-0.05343	0.58949
.68 0.898231 0.42766	680	-0.22985	-0.78689	-0.99996	-0.77593	-0.21273	0.44346
51 0.936805 0.52211	690	-0.11448	-0.70242	-0.99183	-0.8597	-0.36219	0.2892
.37 0.965732 0.608108	700	-0.0009	-0.60953	-0.9662	-0.92345	-0.49896	0.13178

Similarly, the amplitude of the light reflected from TiO₂ thin film was calculated for each

thickness and each wavelength. As shown in Table 2, the maximum amplitude and the

corresponding wavelength were identified.

Table 2. The amplitudes of reflected light for a TiO ₂ thin film with maximum amplitude cell	S
highlighted in pink.	

Thickness nm	Film Thickness		TiO2			2.6142	n
350 375 40	325 350	300	275	250	225	200	Wavelength (nm)
0787 0.537919 -0.9997	-0.98419 0.400787	0.695081	0.210229	-0.92917	0.824376	0.011243	380
5551 0.985316 -0.6492	-0.62279 -0.35551	0.990594	-0.38737	-0.59558	0.994706	-0.41877	390
9143 0.814976 0.13530	0.012095 -0.89143	0.880212	-0.82875	-0.1113	0.932014	-0.75343	400
7349 0.20016 0.80576	0.615568 -0.97349	0.457673	-0.99907	0.379496	0.681076	-0.9502	410
2279 -0.49156 0.99165	0.958905 -0.62279	-0.09679	-0.88627	0.761861	0.314561	-0.99791	420
3565 -0.93058 0.65482	0.954299 -0.03565	-0.59931	-0.55554	0.968946	-0.08916	-0.90962	430
1361 -0.96207 0.0194	0.646511 0.541361	-0.91821	-0.1113	0.983081	-0.46173	-0.71394	440
3886 -0.62279 -0.6005	0.16305 0.913886	-0.99591	0.33795	0.825902	-0.75343	-0.44688	450
0574 -0.0771 -0.9577	-0.34477 0.990574	-0.84374	0.704106	0.543875	-0.93573	-0.14536	460
4302 0.472943 -0.9504	-0.74852 0.784302	-0.5213	0.931683	0.193943	-0.99983	0.157359	470
1958 0.86174 -0.6227	-0.96849 0.381958	-0.1113	0.999589	-0.16806	-0.95262	0.434288	480
9679 0.999965 -0.1133	-0.97962 -0.09679	0.302669	0.916014	-0.49518	-0.81195	0.665821	490
3646 0.880212 0.41025	-0.80329 -0.53646	0.651643	0.709856	-0.75343	-0.60183	0.839718	500
5061 0.559023 0.80640	-0.49176 -0.85061	0.889491	0.421427	-0.92282	-0.34846	0.950369	510
9928 0.12833 0.99059	-0.1113 -0.9928	0.994706	0.094229	-0.99632	-0.07713	0.997646	520
5619 -0.31296 0.94291	0.272382 -0.95619	0.967752	-0.23131	-0.97757	0.189826	0.985625	530
7656 -0.68072 0.69766	0.604321 -0.7656	0.825902	-0.5219	-0.87798	0.434288	0.921321	540
6606 -0.91821 0.32375	0.845977 -0.46606	0.597172	-0.75343	-0.71394	0.642778	0.813559	550
1113 -0.99997 -0.0967	0.976814 -0.1113	0.314561	-0.91136	-0.5042	0.806437	0.672016	560
6127 -0.92917 -0.4869	0.992961 0.246127	0.011243	-0.99005	-0.26786	0.92062	0.506477	570
1725 -0.73082 -0.7870	0.904041 0.561725	-0.28294	-0.99129	-0.02275	0.984279	0.326274	580
3093 -0.44352 -0.9608	0.729187 0.803093	-0.54372	-0.92259	0.215544	0.999261	0.1399	590
5125 -0.1113 -0.9959	0.493001 0.95125	-0.75343	-0.79533	0.434288	0.969591	-0.04522	600
1 0.223166 -0.9006	0.221961 1	-0.9012	-0.62311	0.623835	0.900796	-0.22287	610
3957 0.523362 -0.6988	-0.05844 0.953957	-0.98244	-0.42036	0.777571	0.799319	-0.38801	620
5902 0.761861 -0.4236	-0.32576 0.825902	-0.99791	-0.20118	0.891685	0.672016	-0.53684	630
3938 0.921419 -0.111	-0.56184 0.633938	-0.95262	0.021499	0.964816	0.525759	-0.6666	640
8833 0.994706 0.20292	-0.75343 0.398833	-0.85463	0.236405	0.997646	0.367136	-0.77554	650
1749 0.983081 0.48874	-0.89217 0.141749	-0.71394	0.434288	0.992469	0.202228	-0.86277	660
1751 0.894806 0.72277	-0.9743 -0.11751	-0.54152	0.608005	0.95278	0.036472	-0.92811	670
6176 0.743042 0.88949	-0.99997 -0.36176	-0.34846	0.752489	0.882899	-0.12542	-0.97198	680
7713 0.543875 0.98114	-0.97259 -0.57713	-0.14536	0.864611	0.787637	-0.27952	-0.99527	690
5343 0.314561 0.99699	-0.89795 -0.75343	0.058132	0.942961	0.672016	-0.42261	-0.99925	700

The brightest color of the light reflected by a thin film of each thickness is indicated by the wavelength with the maximum amplitude. ¹ These wavelengths were converted into colors using the Wolfram Alpha wavelength to color widget, as shown in Table 3 for SiO₂ and Table 4 for TiO₂.

Thickness (nm):	Wavelength (nm)	Color
200	580	Pure yellow
225	660	Pure red
250	700	Pure red
275	400	violet blue
300	440	Blue to violet blue
325	470	Blue to blue green
350	510	Green to yellow green
375	550	Yellow Green
400	390	Dark purple
425	620	Pure orange

Table 3: Color and wavelength of light reflected by a SiO₂ thin film as a function of thickness.

Table 4: Color and wavelength of light reflected by a TiO₂ thin film as a function of thickness.

Thickness (nm):	Wavelength (nm)	Color		
200	520	Green to yellow green		
225	590	Yellow orange		
250	650	Red		
275	480	Cyan blue		
300	520	Green to yellow green		
325	570	Green yellow		
350	610	Light orange		
375	490	Cyan blue		
400	700	Pure red		
425	560	Green yellow		

The color chart computed for the SiO₂ films had both similarities and differences from the color chart generated by HTE Labs.⁵ The color chart generated in this experiment had colors that agreed with the colors indicated in the HTE chart at the same thicknesses. Both the HTE chart and the experiment chart indicated blue to violet-blue for 300 nm films, blue to blue green for 325 nm films, and green to yellow green for 350 nm films. Nevertheless, the experiment results indicated pure yellow while the HTE Labs chart indicated light gold or yellow and slightly metallic for a 200 nm SiO₂ film. Moreover, the colors of SiO₂ films with 225, 250 nm thicknesses were determined to be pure red by the experiment while gold with slight yellow-

orange and orange to melon, respectively, by the HTE lab. Other differences were also observed. No literature values or color charts were found for TiO_2 films.

These significant differences may be resulted from the assumptions that were made in calculating the maximum amplitude.² In addition, variations may be raised from differences in the reflective indices. A considerable limitation of the computational method is due to the large increment in wavelength.²

In the second part of the experiment, the wavelength of reflected light was determined as a function of the angle of incident light for SiO₂ with thicknesses of 200, 325, 400 nm. Table 5 shows the results obtained for SiO₂ thin films to determine whether its color depends on the viewing angle. For the SiO₂ film of 200 nm thickness, the wavelengths of light reflected varied from 583.4 nm and 523.6 nm, which corresponded to color range of green yellow to violet. The SiO₂ film of 325 nm thickness reflected wavelengths of light from 474.01 nm to 425.49 nm, which corresponded to color range of light blue to violet. The SiO₂ film of 400 nm thickness reflected wavelengths of light varying from 583.4 nm to 523.68 nm. Interestingly, the SiO₂ films of 200 nm and 400 nm thicknesses reflected the same variations of wavelength.

	Film Thicknesses (nm)				Film Thicknesses (nm)			
Angle	200	325	400	Angle	200	325	400	
(degrees)				(degrees)				
0	583.4	474.0125	583.4	21	565.5149	459.4809	565.5149	
1	583.3582	473.9786	583.3582	22	563.8286	458.1108	563.8286	
2	583.233	473.8768	583.233	23	562.0749	456.6859	562.0749	
3	583.0243	473.7072	583.0243	24	560.2553	455.2074	560.2553	
4	582.7324	473.47	582.7324	25	558.3714	453.6767	558.3714	
5	582.3574	473.1654	582.3574	26	556.4247	452.0951	556.4247	
6	581.8998	472.7936	581.8998	27	554.4172	450.4639	554.4172	
7	581.3598	472.3548	581.3598	28	552.3504	448.7847	552.3504	
8	580.7379	471.8495	580.7379	29	550.2264	447.059	550.2264	
9	580.0346	471.2781	580.0346	30	548.047	445.2882	548.047	
10	579.2504	470.6409	579.2504	31	545.8143	443.4741	545.8143	
11	578.3859	469.9386	578.3859	32	543.5304	441.6184	543.5304	
12	577.4419	469.1716	577.4419	33	541.1973	439.7228	541.1973	
13	576.4192	468.3406	576.4192	34	538.8173	437.7891	538.8173	
14	575.3185	467.4463	575.3185	35	536.3927	435.8191	536.3927	
15	574.1407	466.4894	574.1407	36	533.9259	433.8148	533.9259	
16	572.8869	465.4706	572.8869	37	531.4194	431.7782	531.4194	
17	571.558	464.3909	571.558	38	528.8755	429.7114	528.8755	
18	570.1552	463.2511	570.1552	39	526.297	427.6163	526.297	
19	568.6795	462.0521	568.6795	40	523.6864	425.4952	523.6864	
20	567.1324	460.795	567.1324					

Table 5. Wavelengths in nm of reflected light as a function of the angle of indecent light and the thickness of a SiO2 thin film.

Variations in wavelengths confirmed the iridescent properties of SiO_2 thin films. The color of the films changes as the viewing angle is changed. Such a phenomenon is resulted from several reflections from two semi-transparent surfaces in which phase shift and interference of the reflections controls the incidental light.²

Conclusions

The objective of this experiment was to use a computational approach utilizing fundamental principles of thin film interference and optics to determine whether the thickness of a thin film could be estimated by its color and to determine whether it is iridescent. First, color charts for SiO₂ and TiO₂ thin films were computed using thicknesses between 200 and 425 nm in an increment of 25 nm and wavelengths from 380 to 700 nm in an increment of 10 nm. Second, The wavelengths based on angles of incident light ranging between 0° and 40° in 1° increment for SiO₂ thin films with thicknesses of 200, 325, and 400 nm were computed. Computations were performed using Microsoft Excel spreadsheets.

Experimental results showed the colors of the reflected light for SiO₂ were pure yellow for 200 nm, pure red for 225 nm and 250 nm, violet blue for 275 nm, blue to violet blue for 300 nm, blue to blue green for 325 nm, green to yellow green for 350 nm, yellow Green for 375, dark purple for 400 nm, and pure orange for 425 nm. For TiO₂, the colors of the reflected light were green to yellow green for 200 nm, yellow orange for 225 nm, pure red for 250, cyan for 275 nm, green to yellow green for 300 nm, green yellow for 325 nm, light orange for 350 nm, cyan for 375 nm, pure red for 400 nm, and green yellow for 425 nm. As the angle of incident light varied, the wavelengths of light reflected varied from 583.4 nm to 523.6 nm for the SiO₂ films of 200 nm and 400 nm thicknesses. Similarly, the SiO₂ film of 325 nm thickness reflected wavelengths of light varying from 474.01 nm to 425.49 nm, indicating iridescent properties.

This experiment was successful in demonstrating that the thickness of a thin film can be determined by its color and thin films have iridescent properties. Thin films bend light both at the boundary between air and the film and at the boundary between the film and the substrate.² However, it failed in calculating precise colors because of the limitations of the computational method in which many assumptions were used. The findings of the experiment implied that the color reflected by the film is dependent upon the thickness of the thin film and the angle of incident light.²

References

¹W.D. Callister Jr., Materials Science and Engineering: An Introduction, Seventh Edition (Wiley, New York, 2007).

²D. Brenner, Computational Laboratory on Thin Film Interference, MSE 335 Course Locker, 2016.

³M.N. Polyanskiy, Refractive Index Database, http://refractiveindex.info, (accessed November 2, 2016).

⁴Wolfram|Alpha Widgets: "Convert Wavelength to Color",

http://www.wolframalpha.com/widgets/view.jsp?id=23c041a005eec913db5a74171ea72e63,

(accessed November 2, 2016)

⁵HTE Labs, SiO₂ Color Chart for Thermally Grown Silicon Dioxide,

http://www.htelabs.com/appnotes/sio2_color_chart_thermal_silicon_dioxide.htm, (accessed

November 2, 2016).